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RDX/CALCIUM~STEARATE BINARY SYSTEM
EXPLOSIVE SENSITIVITY CALIBRATION

By J. N. Ayres
C. W, Randall

ABSTRACT: The Small Scale Gap Test sensitivity and output of
RDX/Calcium=-Stearate mixtures ranging from 0.59% to 23.75%
Calcium Stearate have been determined for 4, 8, 16, 32 and 64
KPSI consolidating pressures. By choice of pressure and
composition changes can be made with sensitivities from 3.4 to
7.8 DBy shock sensitivities, Although these mixtures can be
used to satisfy the immediate needs for explosives for the
VARICOMP measurement of weapon explosive train safety and
reliability, explosive systems should be developed wherein
composition control to obtain specific sensitivity and output
is less critical.

EXPIOSION DYNAMICS DIVISION
EXPLOSIONS RESEARCH DEPARTMENT
U. S. NAVAL ORDNANCE LABORATORY
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RDX/CALCIUM~STEARATE BINARY SYSTEM EXPLOSIVE SENSITIVITY
CALIBRATION

The VARICOMP method of penalty testing has been developed to
permit demonstration of the high detonation~transfer safeties and
reliabilities that are needed in modern weapon system explosive

trains. A necessary adjunct of the VARICOMP method is a supply

0f explosive compounds or mixture: with sensitivities that can be

selected in relation to the particular explosive system being
studied.

The present report deals with the calibration, at the request of

and funded by NOL, Corona, of an RDX/Calcium-Stearate binary

system used for VARICOMP testing. The information is of interest

to those who will be using the specific compositions from which .
the samplez were takem and to those who are considering the
possibility of utilizing the VARICOMP process. From this report
can be obtained an idea of the scope of the work needed to
calibrate a VARICOMP explosive series.

R. E. ODENING
Captain, USN
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ROX/CALCIUM STEARATE BINARY SYSTEM EXPLOSIVE SEESITIVITY CALIBRATION

Introdugtion

1, The VARICQE(l)method of detonation~transfer probebility assessment
is based on the use of explosives of known sensitivities and/or outputs. For
instance, if it can be shown that detonstion will transfer with a knowmn
probability into a desensitized acceptor explosive, then logically the
probability of transfer intc a non-desensitized acceptor explosive under the
same conditions will be highers If the relative sensitivities of the
explosives are knowm, it is possible with limited testing to determine the
points of extremely high detonation transfer probabilities of a given weepon
ut41lizing the non~desensitized explosive.

2, Direct determination of high firing probabilities by actual firing
of weapons requires prehibitively large weapon samplss. The VARICOMP method
has been used to predict, with less than 100 shots, (mostly in simulated
hardware) reliabilities in excess of 99.99% at better than 95% confidence.
A direct cbservatica of this perfarmance level and confidence would require
in excess of 10,000 trials.

3+ The VARICOMP method requires the use of explosive charges of two or
more controllable and differing sensitivities (ar outputs). For the
measurement of fuze explosive train detonation transfer probabilities a
f1fteen-menber series of RIX/Calciun-Stearate mixtures has been prepared,
ranging fram 0,59 to 23.75% calcium stearate. The calcium stearate additive
acts both as a desensitizer and as a binder for pelletizings In general, the
greater the calcium stearate content the less semsitive and the more
compressible the mixture,

ke It 41s the purpose of this repart to present the experimental data
and to show the interrelationships between comsolidating pressure, charge
density, compositiom, and sensitivity of the RDX/calcium stearate binary
explosive system, A close inspection of the data reveals certain minar
inconsistencies vhich it is believed could be remedied by redetermimatiomn of
the chemical camposition of certain of the mixes. Even without these re-
determinations the calibrations permit full use of the various mixes in
VARICOMP testing.

(1) References are on page iv,
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Preparation of the Explosive

5. The advisory informstion in Appendices A and B was furnished to the
axplosives manufacturer (Holston Ordnance Works) for the preparation and
chemical analysis of the mixes. The manufscturer was limited by his avail-
able equipment to about 100 pounds of product per run. PFor orders greater
than 100-pounds, 100 pound sub-batches were blended. A sample was taken of
each sub-batch for chemical analysis and to permit future sensitivity testing.

6. Certain sub-batches were not analyzed. However, all samples (both
batch and sub-batch) which were received at NOL were given unique identifi-

cation numbers, Appendix C i{s a compilation of batch and sub-batch
identification and analytical information,

Sensitivity Testing

7. The sensitivity of each of the fifteen main (composite) batches was
determined using the Small Scale Oep Test.(2) Twenty bodies were loaded at
each of five consolidating pressures: 4.0, 8,0, 16.0, 32,0, and 64,0 X psi.
Two of the bodies at each of the five pressures were fired with no attenua-
tion between the donor and acceptor, The average dent output of each pair
of zero=-gap shots was reported as the output. The eighteen shots remaining

in each group were then fired, using a Bruceton sequential stair-step plan,
In some few instances, when the firing of two shots at zerc gap was omitted,
all twenty pleces in the group were fired accoraing to the Bruceton plan.
In these cases there are no dent output values quoted.

Presentation of Results

8. The charge density, sensitivity, and output data are reported for
eacu of the fifteen compositions at each of the five consoclidating pressures
in Appendix D. The average demnsity and the standard deviation of an in-
dividual density reaaing are reported in units of grams/cc. The average
density is also reported as percent of theoretical maximum density (TMD).
The TMD for each of the fifteen mixes was computed assuming & simple additive
mixture of RDX (IMD = 1.8]1 grame/cc) and calcium stearate (TMD = 1.0k
grams/cc) according to the reported chemical analysis., The sensitivity is
reported in units of DBg (the gap Decibang) which is & normalizing
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transformation of the input dossge. It can be thought of as being propor-
tional to the relative shock strength applied to the explosive in the
acceptor.* The sensitivity parameters given are: AVG level, the level at
which 50% response would be expected; :, the standard deviation of an
individual observation; and 5/, the standard deviation of the AVG level,

9¢ In order to convey an idea of the accuracy of, and the effort
involved in, this calibration the following facts are presented:

ae Fifteen hundred Small Scale Gap Test shots were fired
plus over a hundred more shots to check the output
quality of donors and detonators.

be Each charge holder inside diameter, and each explosive
column length were measured to about 0.05% accuracy.

ce Charge weights were obtained by weighing the bodies
before and after loading. Every determination was
based on two independent observatioms which were
not accepted unless they agreed within 1 milligram.
(The charge weight 1s in the order of 1.2 to l.5 grams
and body weight 150 to 150 grams),

de The standard deviation of charge weight and of density
for any tventy bdodies representing a particular
combination of density and compoesition did not exceed
0e2% and were usually sbout 0,05 to 0,1%.

es The accuracy of dent measurement is about 0,5 mils

*
When the shock is derived fram the standard SSOP domor (1) through a
thickness of lucite attenuator the DBg is computed as

Input (D 10 loa, Reference Thickness
mut (DBg) = o8- Attenuator Thickness

The reference thickness being 1.0 inch and the attenuator thickness being
reported in mils, the expression reduces to

Input = 30 - 10 log (attemuator thickness)

3
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Effect of Composition on Sensitivity and Output

10. Figures 1 through 6 have been prepared to show the effect of
composition on the sensitivity of the explosive mixtures. With the consoli-
dating pressure held constant, the mixtures become less sensitive with in-
creasing calcium stearate content. TMurthermore, the rate of desensitization
is greatest at the lowest percentages and decreases as the additive is
increased,

1l. A curious trend can be seen in the region of the 2,54, 3.34, 4.79
and 6.07% calcium stearate mixes. The sensitivities of the 4.99% mix seem
to be low campared with the 334 and 6.07% mixes. It iz unlikely that such
a trend could arise from sampling error.

12, One source of this anomaly could be faulty chemical analysis,
vhich would shift, horizontally, all five sensitivity points for a given
compositions Accordingly, two mixes were re-analyzed with the following
results:

Percent Calcium Stearate

Analysis by Vendor Re-Analysis (by NOL)
X Number Replicates Average Replicates Average
358 4L.86 h.92
bo.g4
5.03 4.9 4,95
5,07
362 6.07 6.61
6.07 6.57
6,04 6.52
Sadd

An inspection of the sensitivity curves (Figures 1 through 6) shows that
replotting with the 4,94 and 6.57% data coordinates would permit redrawing
the curves in a way wvhich would give scmevhat better agreement with the
observed data.

UNCLASS IFTED
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13, If there were a gross error in the composition of either of these
two mixes (or for any of them, for that matter) it was reasoned that this
would glve rise to a discrepancy in the output of the explosive as observed
on the SSOT witness block with no attenuation between the donor and the
acceptor. To check this concept the following scheme was uged:

a. It hes been found (references 1 and 2) for a fixed
geometry of highly confined explosive such as in
the SSAT, that the steel dent output reading is
linearly related to the detonation velocity and the
detonation velocity is in turn linear with the density.

Since the acceptor coclumn length and volume are the seme
for all tests, it seems reasonsble to assume that the
dent should be proportional to the amount of RDX in the

acceptor.

b. The amount of RDX can be computed as the product of
the volume of the acceptor, the charge density, and
the proportional. RDX content.

c. Since the volume is constant the varisble factor
will be the product of the density and the proportional
RDX content, in equation form

_ (% rDX) (p)
100
and p 18 the charge density.

P vhere P is the pertial density of RDX

d. The output wes plotted against the partial denmsity
of RDX (Figure 7). A straight line fit of these
datas was made using the least squares technique.

This procedure ylelded an equation relating the dent and the partial density
of RDX (and thus the density and composition of the mix).

D= 33.76 P 4+ 9.29
where D is the dent in mils.

14, The usuel statistical procedures were used to test how well the
data were described by the above equation. The tests were uged for all of
the data points and also for each of the data groups for the fifteen mixtures.

In all cases a high degree of correlation was found, with the least
satisfactory fit being for the 0.59% calcium stearate mix. In particular it

5
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should be noted that the 4.99 and 6,07 calciunm stearate mix data points
straddle the line. If the calecium stearste content of these mixes were
assumed to be off by about 26 from the stated values (as high ac 7.0 and 8.0
respectively or as low as 3,0 and 4.0), the plotted dent values would then no
longer be found to straddle the regression line, This is certeinly no sub-
stitute for an accurate chemical analysis to determine a chemical composition.
It is however a check on the consistency of the observed behavior.

15, It does not seem that the irregularities in the sensitivity
composition curves can be explained as being due solely to errors in
estimation of composition. Further experimental work would be required to
attempt to improve the curves, However, there are nc immediate plans to
pursue this effort. The explosives can be used satisfactorily for VARICOMP
testing with the existing information., Perhaps somewhat less precision and
sophistication can be obtained than might otherwise have been possible with
swooth composition-sensitivity functions.

Effect of Consolidating Pressure on Sensitivity

16. The more generally useful relstionships are those which show, for
specific compositions, the effect of consolidating pressure or density upon
sensitivity, These have been presented graphically in Figures D-1 through
D-15 of Appendix D, Each datum point has a vertical line drawn through it,
the length of which represents the expected error limits of the location of
the fifty-percent firing level,

17. The minima, vhich are seen in the majority of the sensitivitye
versus consolidating-presgsure curves at sbout 8K psi, are not new phenomena.
They represent the resultant of two competing mechanisms.

a, In general explosives become less sensitive to shock
with increasing density and would therefore be ex-
vected to increase in sensitivity at the lower
consolidating preesures,

b. As the explosive becomes less dense and the RDX
particles in less intimate contact it is necessary
that the detonation be stronger in order to bridge
the increasing gap between particles.

18. A deeper insight into the system can be obtained by studying such
¢things as the relationships between consolidating pressure, charge
composition, and density (Figure 8), and also the rather novel graphic
presentations of Figures 9 and 10. Calcium stearate acts as a diluent, a
lubricant, and & binder, The dilution gives rise to the two effects already
discussed--desensitization and reduction of output. The lubricating effect

UNCLASSIFIED
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can be peen in Figure 8. For loading pressures of 4 or 8K pei the higher
the proportion of calcium stearate the nearer to the theoretical maximam
density (TMD) are the charge densities., At the higher consolidating
pressures it can be seen that the relative densities are maximized at inter-
mediate calcium stearate proportions rather than at the higher levels, This
also arises from the lubricating effect of the calcium stearate as evidenced
by the greater spring-back which occurred. Spring=back is the term used to
describe the expansion which is usually observed with pressed charges after
the consolidating pressure is removed, The spring-back effect is limited in
part by the friction between the acceptor walls and the explosive in contact
with the walls, At the higher pressures the spring=back forces are large
enough to overcoms, at least partially, the wall friction forces.

Iso-Sensitivity Presentation

19, Flgures 9 and 10 have heen prepared in a manner analogous to the
drawing of isobars and isctherms on weather maps., In Figure 9, the vertical
coordinate is the consolidating pressure and the horizontal 1s the composition
{plotted logarithmically) since these are the controllable variables, Smooth
curves have then been drawn which represent the estimated loci for all the
possible combinations of compositions and pressures which would be expected
to have the indicated sensitivity. For the portions of the isosensitivity
curves which are oriented more or less vertically the comsoliduting pressure
hag little effect on the sensitivity. Similarly when they are oriented more
or less horizontally, ther the dilution of the RIX by calcium stearate has
relatively little effect on sensitivity.

20. For Figure 10 the vertical coordinate is the charge density rather
than the consolidating pressure. Here, loci have been drawn for the 4, 8,
16, 32, and 63K psi consolidating pressures as well as for the isosensitivity
points. In this presentation it can be seen that there are portions of the
diagram where the isosensitivity curves are much closer together than else-
vhere, In such portions, a relatively small error in composition or shift in
density can bring about a considersble alteration in sensitivity. Since

nearly any desired sensitivity can be achieved by a mmber of different
corbinations of the variable parameters, it seems sensidle to select the

composition and pressure so that the error in sensitivity will be minimized.
Such a place would be wvhere the isosensitivity lines are most widely separated.

Recommendations

21, This series of RDX/calcium-stearate mixtures is being used in the
assessment of detonator-to~lead and lead-to-booster detonation transfer
probabilities of s number of wesapon explosive trains using the VARICOMP
experimental approach. An ideal calibration of a VARICOMP explosive seriea
would involve a smoothing of sensitivity data on the basis of chemical

UNCLASSIFIED
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campogition to copensate for the variability introduced by the sampling
errar that is inevitable with the small sample size (18 or 20 shote per test)
in the 0O/NO-GO testing. In the yresent instance such smoothing would not be
Justified without further anslytical and experimental investigation.
Consequently, as a practical method of utilizing the explosives and their
calibration date at the present state of knowledge, the following procedures
are suggested for use.

aes Accept the reported values of sensitivity at each
of the conaolidating pressures as they are given
in Appendix D,

be To fabricate charges of a desired sensitivity
select a combination of compoesition and pressure
for vhich the least shift in sensitivity might
arise due to an unfortunate choice, For instance,
chocse & cambination for vhich the pressure is
closest t0 a calibration pressure. Or choose a
combimation vhere there is a minimum change in
sensitivity between the calibration pressure
lying on each side of the chosen pressure.

ce If the explosive transfer system being tested
shows an indication of being marginal s0 that a
small error in the calibration might have sericus
consequences, verify the sensitivity of the
canbination by an SS@F calibration.

de. Assume that, for any other configuration than the
SSQGF acceptor, the various composition-pressure-
sensitivity relations hold in the same relative
BANNAY .

22, The immediately Dreceeding statement is made to emphasize the fact
that the sensitivity of an explosive charge is strangly affected by its
contiguration, For instance, had the explosives been loaded into sluminmm
or plastic charge holders instead of brass the explosives would have showmn
a decreased sensitivity. Desensitization would also have been observed had
the acceptar charge diameter been mich smaller or much larger than the domor
diameter.

Conclusions

23, Mechanically, the RDX/calcium-stearate system is less than ideal,
When pressed into cups or cylindrical cavities it handles well except at
high densities and pressures vhere excessive spring-back is encountered. The

8
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spring-back can be controlled to same degree by using a dwell time of five

or ten seconds on each increment, with the increment length being no greater
than the charge diameter. Free pellets of the explosives, such as 1/2-inch
diameter by 1/2-inch long, are fragile at best. At the higher concemtrations
of calcium steasrate the pellet is apt 4o break up into a series of discs.

At the very low concentrations the pellet will simply crunble imto a heap of
lumpy powder. However, by proper choice of composition and pressure it is
poesible to make pellets throughout the greater region of the sensitivity
spectrum covered in the calibration testing.

2he With all of the aforementioned limitations this system of explosive
mixtures is proving out in the VARICQMP method of assessing detamation
transfer probabilities, as a powerful experimental tool.

25 Some binary mixtures in which both components are high explosives
should be & considerable improvement over the RDX/calcium stearate mixtures.
These explosives should be chosen, 80 that in the pure form one would be
canparatively sensitive and the other insensitive. On the assumption that
the sensitivity of a mixture would be predictable fram the ratio of their
relative quantities, it would be expected that an error in compoeition would
hsve less of ean effect on the sensitivity than is now the case for the RDX/
calcium stearate system. With both components active there should be much
lese degradatiom of performance at the insensitive end, making it much
easier to establish a criterion of fire. It should also be possible to
select the explosives with some consideration of demsity, melting point, and
other physical properties so that a better physical mixture could be obtained.

9
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UNCLASSIFIED
NOILFR 63-91

AFFENDIX A

PROCEDURE FOGR PREPARING A 100-POUND
BATCH OF DESENSITIZED RDX

Aol Let X be the numerical value of the desired percentage of RDX
in the final product.

As2 Prepare an RDX-water slurry by adding X pounds of RDX (JAN-R-398
Type B, Class A) to 10X pounds of distilled water at 70 to 80° Centigrade,

As3 Prepere & sodium stearate solution by dissolving (100-X) pounds of
sodium stearate (Technical Orade) in (1300-13X) pounds of distilled water at
70-80° Centigrade.

At Prepare a calcium chloride solution by dissolving (75-=0.75X)
pounds of caleium chloride (0<C=104, Class 1} in (1500-15X) pounds of
distilled water at 70-80° Centigrade.

A.5 Add the sodium stearate soclution to the RDX slurry with rapid
stirring.

As§ With rapid stirring, add the calcium chloride to the RDX-sodium
stearate mixture (addition should take from 15 to 30 minutes).

AsT Filter and wash with distilled water until the effluent wash wmter
is free of chloride ion. This can be detected by testing the wash water with
a silver nitrate solutiom.

A8 Dry the filtered and washed product at 70° Centigrade on trays
over steam coils,

A-1
UNCIASSIPIED




UNCLASSIFIED
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AFPENDIX B
ARALYTIC PROCEDURE FOR RDX/GAI.CIU( STEARATE MIXES
B, 1 Procedure

B, l, 1 Sample size should be set to yield approximately 0.3 gram
of calcium stearate after the extraction of the RDX, From the
standpoint of safety an upper limit of 3- to 5- gram sample size is
recommended.

Be_ 1, 2 Standard dry powder sampling and sample blending procedures
should be employed.

Bs 1, 3 Medium porosity sintered glass crucible should be thoroughly
washed, sosked in boiling acetone, dried and tared.

Bo 1, 4 Sample should be weighed in the tared sintered glass crucible.

Be ls 5 The weight loss by volatiles should be determined by weighing
the sample and crucible after vacuum drying for ome hour at 70°
Centigrade and 50=millimeters Hg absolute pressure,

Be 1, 6 The RDX should be extracted by 8 washings of 20 milliliters
each of boiling acetone., During each washing the sample should be
triturated continuously with a tared glass stirring rod, in order to
break all lumps.

Be 1. 7 The calcium stearate residue, crucible, and stirring rod
should be vacuum dried for ome hour at 70° Centigrade and 50-milli-
meters Hg. absolute pressure.

By 1. 8 The residue and glassware should be weighed after being
allowed to cool for 30 minutes in a desiccator. The weight loss
fram the acetone extraction is taken as the amount of RDX and the
weight of the residue as calcium stearate.

B~1
UNCIASSIFIED
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uti Notes

By 2. 1 Particularly above about 8 percent of calcium stearate the
analysis becomes rather difficult and subject to gross error due to
poor snalytic technique. The error seems to0 be due to incomplete RDX
extraction which spparently is due to the tendency of the calcium
stearate to form a protective coating on the surface of the RDX
perticles. The cbvious approach of increasing the amount of washing
with hot acetone is not considered advisable because of the increased
chance of loss of calcium stearate.

B, 2o 2 FParticularly vhen there seems to be an unacceptably high ‘
volatile content, (above 0.2 percent should be viewed with suspicion)
there may have not been adequate washing of the mix during its
manufacture, In such cases the presence of calcium chloride should
be suspected since such a material would lead to hygroscopicity of
the mix.

B. 2. 3 At the present time a specific procedure has not been
developed for the quantitative determinatiom of the chloride ion., A
number of approaches seem prowmising. Perhaps the best one 1s to
perform & replicate analysis as above except for the inclusion of an
extre step between steps B. 1. 5 and B, 1. 6 vhich would include a
water wash followed by a vacuum drying and reweighing of the residue
and a quantitative precipitation of chloride ion from the filirate. {

B=-2
UNCIASSIFIED
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NOITR 63-91
APPENDIX C
Percent
Calcium Stearate
MYanufacturer's

Manutacturer's ML % 8S0T Data
Ideptification X Wusber  Average Exror  Location

1 348 0.59 0.05 D-1

2 349 0.83 0.15 D-2

3 350 1.65 0.06 D-3

" 351 R— — -

5 352 cme -~ ———
Blend 4, 5 353 2,5k 0,03 _D-k
Bland 6, 7 354 33k 0.2k D-5

8 355 473 m—ee ——-

9 356 —em= ——— -e-e

10 357 k.56 ———— ———
Blend 8, 9, 10 358 4,99 0,28 _D-6

n 359 7+03 ———— .-

12 360 5491 - -

13 361 7.08 . -
Blegd 11, 12, 13 62 6,07 0,09 D-7

14 363 10,43 - -

c-1
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APPENDIX ¢ (contimied)

Percent
Calcium Stearate
Manufacturer's

Apalytic Data

Memifacturer's NOL Observed SSQF Data
Identification X Fumber Average Error Location
15 36 9.69 - —
16 365 10,02 R m-
Blend 1k, 15, 16 366 9.16 0s2l D-8
17 367 12,05 PR -
18 368 11.90 ——— - o
19 369 11.45 amee ——
Blend 17, 18, 19 370 11,05 Oeks5 D-9
20 3T 12,86 - - {
2 372 13495 - -
30 373 13.96 wmna -
Blend 20, 21, 30 37k 12,79 Ol D=10 |
22 375 15.05 - - ‘
a3 376 14.84 ———- o
31 3T 15494
Blend 22,23,31 318 14,16 Q.11 D-11
c-2
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APPENDIX C (continued)

Percent
Calcium Stearate
Mamifacturer's

Amlytic Data
Manufacturer's NOL Observed  SSOT Data
Identification X Bumber Average _Error Location
C 379 17.50 R -
25 380 17.65 - vau
Blend 24, 25 06l 16,53 Q.31 D12
26 382 20.7h R .
27 383 19.79 m—ee —-
Blend 26 384 18,70 Q.42 D=13
28 385 2149 Q.47 D=l
29 386 23,75 0:37 D-15

C-3
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APPENDIX D

COMPOSITION .
0.83% CALCIUM STEARATE
SPECIFIED1.9; DELIVERED 0.83;

B
B
-4
=3
E
i

["COADING DENSITY %, TMD] SHOCK STRENGTH,08G |OUTPUT |
PRESSURE | (GRAMS/CC) DENT
(KPSI) AVG b AVG A &M | (MILS)
4 1,442 |o.6022| 80,277| 3.484]0.054% |0.018 *| 60.6
1.5134 | 0.0041| 84,124 3.56510,0862 | 0,022 64,7
16 |;.8976 |0.0026| 88,804 3.991]0.08%6 |0.018 # 62.8

32 11,7006 |0.0050| 9%.530 4,846]0.086 |o0.,031 | 67.3

64 |y 7673 |0.00%4 | 97.682| 6.432l0.142 |o.0ou7 | 68.6
% 5 M ESTIMATED

8.0+ g 16 32 64

2.0
]
s A
£ 60 a
=
[TY]
: )4
[72]

5.0 |
’ 7 <
o /
I ‘
[72]

A
4.0 - ] ‘
/
i
3.0
0 5 i0 15 20 30 40 5060 70

LLOADING PRESSURE (KPS!)

F1G.D-2 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X-—NO, 349.

D-2
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NOLTR 6€3-9I
APPENDIX D

COMPOSITION |

1.65%6 CALCIUM STEARATE

SPECIFIED 2,05 DELIVERED 1.65;
(TOADING | DENSITY % TMD| SHOCK STRENGTH,DBG | OUTPUT
PRESSURE | (GRAMS/CC) | DENT
(KPS1) | AVG & AVG 5 AM | (MILS)

4 [1.4495 | 0,0089

81.068 13.896/0,052 | 0.01T 4 59.9

8 11.533 |o0.,0099

85,738 3.964]0,135 | 0,046 | 62,2

16 [1.6213 | 0.0093

90.674 u4.479(0.143 | 0.049 62,2

32  |1,7075 | 0.0053

95,497 5,469/ 0.045 | 0,015 63.1

64 11 7502 | 0,0039

98,448 6,531/0.092 | 0.034 65.7

#* 5 M ESTIMATED

8.0

8
2

6 32 64

7.0

!

L T 1

6.0

5.0

SHOCK STRENGTH, DBG

4.0

'

3.0

10

15 20 30 40 060 70

LOADING PRESSURE (KPSI)

FiG.D-3 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X-—NO, 350.

D-3
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E APPENDIX D

5

g COMPOSITION:

% 2.54% CALCIUM STEARATE

: SPECIFIED 2.8; DELIVERED 2.,5%;

["LOADING —WWWWG— OUTPUT

PRESSURE | (GRAMS/CC) DENT
) AVG [ AVG ) HM | (MILS)

4,682 [2.0079| 82.622| 4.462|0.089 |0.032 | 58.8
8 |1.54800 [0.0087| 86.662] 4.389/0.09% |0.033 | 62.1
16 [1,6386 [0,c108| 92.211] &4.847|0.077 |0.029 | 61.6
32  |1,7103 |0.0054 | 96,246 5.757]0.057 |0.019 #| 63.1

64 |1 7501 |0.0046] 98.508 6.639/0.00% |0.033 | 67.7
% 5 M ESTIMATED

8.0—4 8 i6 32 64

¥ ¥ T T

7.0

s'o

/
P

o

SHOCK STRENGTH, DBG

4.0

30 015 20 30 40 5060 70

LOADING PRESSURE (KPSI)

FIG.D-4 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MiX X- NO, 353.
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APPENDIX D
COMPOSITION .
3,348 CALCIUM STEARATE
SPECIFIED %.0; DELIVERED 3.3%4;
LOADING % TMD| SHOCK STRENGTH,DBG  |OUTPUT

DENSITY
PRESSURE | {GRAMS/CC) DENT
(KPSI) AVG 5 AVG Iy HM | (MILS)
4 1.4815 | 0.0045| 83.842 4.%40/0,012 | 0,042 | %8.3
8 l1.5617 | 0.0106| 88.381 %.551l0.873 | 0.027 | s9.2
16 |1,6528 | 0.0c38| 93.537 4.940/0.0% | 0.023 | 62.5
32 1.7160 | 0.0020| 97.113 5.9%1|0.027 | 0,000« €4.8

€4 |1 7423 |0,0034| 98.602 6.810]0.056 | 0.022 | 63.7
% 5 M _ESTIMATED
8.0+ 8 i1 32 L
7.0 5
B L~
O /
E 6.0 < \
(L]
=
W
= //
k= ‘
5.0 - o !
x
§ h——_-_i—“/
7]
4'0 1
3.0
G 10 5 20 30 40 5060 70

LOADING PRESSURE (KPSI)

FIG.D-5 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X-NO, 354.

D=3
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COMPOSITION .

NOLTR 63-~-9I

APPENDIX D

h,99% CALCIUM STEARATE
SPECIFIED 5.6; DELIVERED %.99;

LOADING PRESSURE (KPS|

[ TCOADING DENSITY | % TMD| SHOCK STRENGTH,DBG |OUTFUT |

PRESSURE | (GRAMS/CC) | ! DENT

(KPSI) | AVG 5 AVG 5 sM | (MILS)
4 11,4873 | 0,0076| 85.232 4.580l0.073 |o0.027 | 57.0
8 [1.5657 | 0.0052| 89.724| 4.645{0.142 |o0.086 | 6o.4
16 11.6515 |0.0028] on.641 5.104(0.052 |o0.017#| 50.7.
32 11,7008 |0.0017| 97.467| 6.078|0.076 | 0.026 | 50.2
84 iy 7271 |o0.0054| 98,991 6.985l0.252 |0.081 | 64.0

% & M ESTIMATED
8.0—% 8 18 32 Lk
7.0 14

© e

a8 v

<

= 6.0

2 /

1Y)

=

/2]
5.0

v =

S T

(42
4.0
3% s 0 5 20 30 40 5060 70

FIG.D-6 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X—NO, 358.
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APPENDIX O

COMPOSITION :
6.07% CALCIUM STEARATE
SPECIFIED 8.0; DELIVERED 6.0T;
LORDING DENSITY K STRENGTH,DBG _ [QUTFUT
PRESSURE | (GRAMS/CC) | TWD] SHOCK S DENT
(KPSI) | AVG 5 AVG 5 &M | (MILS)

4 |1.,%018]0,9076| 86,659 5.363[0.326 |6.108 | %6.8
8 |1.%675 | c.0078 90,434 5.148|0,132 |e.e48 | 7.1
16 11,6489 | 8,0043| 98,187 5.719/0.048 | 6.018 ¥ 62.%
32 11,6883 | 0,0023] 97.287 6.326|0.073 | 0,027 | 60.4

64 |y 7012 | 06,0037 98.164 T.221|0.189 | e.0%8 | 61.3
% & M ESTIMATED

8.0—% 8 i6 32 64

¥ T ™

7.0 2d
rd

6.0 7

:
R —

SHOCK STRENGTH, DBG

4.0

30— 015 20 30 40 5060 70

LOADING PRESSURE (KPS!)

FIG.D-7 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X=NO, 362.
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APPENDIX - D
COMPOSITION .
9.16% CALCIUM STEARATE
SPECIFIED 12, 0;DELIVERED 9.16;
[LOADING | DE % TMD| SHOCK STRENGTH,DBG |OUTPUT |
PRESSURE | (GRAMS/CC) D ! DENT
(KPSI) | AVG ) AVG s &M | (MILS)
4  Ji.5029 |0.0040| 88,719 5.851|0.09% |0.035 | 52.8
8 11.5638 |0.0025| 92,314 5.729]0.052 |0.017 #| 5%.9
16 1.625% [0.0061] 95.950 6.1410.117 |0.039 | %9.6
32 h.6393 |6.0080] 96.770 6.795/0.131 [e.ou% | 59,1
84  l1.6497 |0.0023] 97.384 7.2u3]0.087 |0.019 +| 58.6
% 6 M ESTIMATED
8.0+ 8 16 32 L1
L3
7.0 et
§ /
£ 6.0
é B B
w 5.0
(%]
g
(7]
4.0
3.0
0 5 10 15 20 30 40 5060 70

LOADING PRESSURE (KPSi}

FIG.D-8 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X-—NO,366.
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NOLTR 63-9I

APPENDIX D
COMPOSITION .
11.05% CALCIUM STEARATE
SPECIFIED 1%.0;DELIVERED 11.05;
[OADNG | _DENSITY % TMD| SHOCK STRENGTH,DBG | [OUTPUT |
PRESSURE | {GRAMS/CC) DENT
(KPSI) | AVG 3 AVG 3 &M | (MILS)
4 |1.5011 |6.0057] 89,729 6.080/e.073 | 8.027 | 52.6
8 |1.5611 |0.0027| 93.311 6.016/0.05% |6.018 % 56.0
16 |1.6008 |0.0015| 95.684 6.297/0.629 | 0.009 & 55.1
32  |1.6176 | 0.0018] 96,688 6.651/ 6,160 | 0,035 57.2
64 |1 6251 |0.0028] 97.134 T.396|0.052 | 9,017 ¥ 55.2
% 5 M ESTIMATED
8.0+ & e 2 L4
|
7.0
(L]
E 6.0+ |
2
B
[’}
g 5.0
7]
4.0
3.0
CHRE ) 15 20 30 40 5060 70

LLOADING PRESSURE (KPSI)

FIG.D-9 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X=NO, 370.
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LOADING PRESSURE (KPSI)

APPENDIX D
COMPOSITION ;
12,79% CALCIUM STEARATE
SPECIFIED 16,03 DELIVERED 12.79;
FCOADING DENSITY TMD] SHOCK STRENGTH,DB8G  |OUTPUT
PRESSURE | (GRAMS/CC) DENT
{ (KPSI}) | AVG 3 AVG 5 &M | (MILS)
4 [1,4875 (0.0069| 89,987 6.285(0.0u2 | 0.0014% s4,7
8 |1.s459 |6.0036| 93,520 6.173]0,116 | 0,039 | 53.3
16 |),5866 |0.0025] 95.983 6.604(0.095 |o0.023 | 32.4
32 ,6012 |p.0013] 96.866] 7.00700,057 [ 0,019 *| 5.2
64  1,5089 |0.0003] 97.332 7.551[0.073 |e.027 | sh.7
% & M ESTIMATED
8.0—% 8 L 32 L
L}
L1
7.0 / /
2 L
g /
i {\.&,})
s €.0
2
w
=
L2}
® 50
[&]
[e]
X
n
4.0
36— 10 IS5 20 30 40 5060 70

FI1G.0-10 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX ¥X-NO,374.




COMPOSITION .

NOLTR 63-9I

APPENDIX D

14,162 CALCIUM STEARATE
SPECIFIED 18,3; DELIVERED 14.16;

LOADING DENSITY  [% TMD| SHOCK STRENGTH,DBG  |OUTPUT
PRESSURE | (GRAMS/ CC) DENT
(KPSI) AVG )3 AVG 5 &M | (MILS)
4  [1.873 [0.0e41] 90.784 6.335/0.056 | 0,022 | 52.6
8 |1.5465 |0.0623| 93.90d 6.375|0.057 | 0.619 # s55.2
32  1.5828 [0.003%| 96.571 T.1780.027 | 0.005 4 s4.7
84  |1.5887 | 0.0029| 96.931 7.59%|6.108 | 0.636 4 s0.3
% & M ESTIMATED
8.0 ? ? |'5 32 64
L}
/A//
7.0 -]
Q //
-]
=] 3
£ 6.0
2
[TY)
[ 4
a
2 5.0
3
X
v
4.0
3.0
0 5 10 1S 20 30 40 5060 70

LOADING PRESSURE (KPSI)

FIG.D-1l LOADING ANC FIRING DATA FOR RDX CALCIUM STEARATE

MIX
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APPENDIX D

COMPOSITION .

=
z
B
=

16.8%% CALCIUM STEARATE
SPECIFIED 29.8; DELIVERED 16.55;

0

mm % TMD| SHOCK STRENGTH,DBG W

(KPSI) | AVG 5 AVG 5 &M | (MILS)
4 |1.4738 0.0031| 91,426 6.726]0.100 |0.035 | 50.5
8 |1.s0%8 | 0.0028| o871 6.646(0.052 | 0.017 #| 49,7
16 11.5%36 | 8.0013| 96.377 6.993{0.087 | 0,019 # =1.2
32 15507 | 0.0014| 96.7%% 7.368|0.087 | 0.010 ¥ 8.1
64  [1.5662 | 0.0026| o7.188 7.729/0.052 | 0,017 ¥ 49.T

% 56 M ESTIMATED

8.0+ 8 16 32 64
///r*
7.0 /'{'// . {
@ T
(=]
f:, 6.0 {
2
)
['4
&
$ 80
[&]
@]
p
(5]
4.0
3.0
0 ) 10 5 20 30 40 060 70 l

LOADING PRESSURE (KPSI) ‘

FIG.D-I2 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X-NO, 33I.
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APPENDIX ©
COMPOSITION :
18.704 CALCIUM STEARATE
SPECIFIED 23.3; DELIVERED 18,703
LOADING DENSITY %% TMD K STRENGTH,0BG _ |OUTBUT
PRESSURE | (GRAMS/CC) | SHock S DENT
(KPSI) | AVG 5 AVG 5 &M | (MILS)
4 1y ysuy | o,0082] 91.520| 7.126l0.104 |0.037 | 47.3
8 1,4988 [ 0,003%| 94.323| 6.894]0.172 | 0.0%7 418.9
t6 14,5007 | 0.0000| 95.701| 7.21200.089 lo0,032 | k9.1
32 |1.5315 {0.0023| 96.381] 7.%35]0.085 [0.030 [ s50.2
64 1,5308 | 0,0038] 96.337] 7.818[0.142 [0.047 0.7
8.0—% 8 I6 32 64
)/’!/‘L‘///
! L
7.0 ‘I\ T /J' : l
© | |
o | : :r
o} . H
2 , j ,
= 60 ‘ y X
L') | 1 {
v | Lo
"4 ! | ] ¢
5 Lo
¥ 5.0 B —
s i ! !
[®] i i
X ! !
o ,' }
4.0 : '
i
1 !
L
3.0 S " -
0 5 10 5 20 30 40 5060 70

LOADING PRESSURE (KPSI}

F1G.D~13 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE
MIX X—NO, 384,

0-13
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APPENDIX D

COMPQSITION .

21.59% CALCIUM STEARATE
SPECIFIED26.0; DELIVERED 21.49;

PRESSURE | (GRAMS/ CC)
{KPSI) AVG A

LOADING DENSITY > TMD| SHOCK STRENGTH,0BG [OUTPUT

AVG A AM {MILS)

4 |1.4494 | 0,0028| 32.850| 7.05% | 0,038 | 0.020 | 47.5

8 |;.4865 | 0.,0026 95.227| 7.048 | 0.116 | 0.039 | 47.3

16 |1,5057 | 0.0024 96.457| 7.236 | 0.09% | 0.033 | 49.2

32 1.5097 | 0,0020| 96.713| 7.660 | 0,086 | 0,028 #| 148.7

64 |y s150| 0,0029 97.053| 7.798 | 0.070 | 0.026 | 50.0

% & M ESTIMATED

-] 32 64

g.o—% 8

/
7.0 == ra.l/'{/

T T 11
4

6.0

5.0

SHOCK STRENGTH, DBG

4.0

3.0

o 5 10

15 20 30 40 5060 70

LOADING PRESSURE (KPSI)

F1G.D-14 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE

MIX X-NO, 385.
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APPENDIX D
COMPOSITION .
23.75% CALCIUM STEARATE
SPECIFIED 28.0; DELIVERED 23.75;
LOADING BENSITY % TMD] SHOCK STRENGTH,DBG OUTPUT
\massune (GRAMS/CC) | DENT
(KPSI) | AVG i AVG 5 sM | (MILS)
[ 4 [1.1368 |0.0020| 92.969) T.174|e.e27 |0©.009 * 47,5
‘ 8 |1.u662 |e.e028| 95.269 7.132|0.057 9.010 *| 45.7
16 |.4842 |0.0046] 96.439 7.286/0.129 | 0.843 44,7
32 11.4878 |o.0024| 96.673 7.632(0.057 | €.619 * 48.2
64 |1 .u907 |0.0026| 96.991 7.882/.057 | €.019 ¥ 57.9
% 5 M ESTIMATED
8.0 — 8 18 32 14
. *_1_4/_}/
(]
m
o
£ 60
(4]
2
w
[« 4
S
© 5.0
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(@]
X
[72]
40
3.0 : | |
CIE ) 15 20 30 40 5060 70
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F1G.D-15 LOADING AND FIRING DATA FOR RDX CALCIUM STEARATE

MIX X-—NO, 386.
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